If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-2t-6=0
a = 4.9; b = -2; c = -6;
Δ = b2-4ac
Δ = -22-4·4.9·(-6)
Δ = 121.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{121.6}}{2*4.9}=\frac{2-\sqrt{121.6}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{121.6}}{2*4.9}=\frac{2+\sqrt{121.6}}{9.8} $
| 3a-(4+2a-7)=0 | | 4^x=200 | | t2-40t-100=0 | | 2-25c=-26c=23 | | -7+2.2t+4.9t^2=0 | | -15.5x=2790 | | 9(u –2)+1.5u =8.25 | | 4.9t^2-2.2t-7=0 | | x/9+5=9 | | 3x/5-x=x/10-7/2 | | 4x-3+6+5+4x-3+x+5=29 | | 50-20+2x=10 | | 9-(2y-5)=5y+7 | | 12=k270 | | 8x-19=27 | | 3(q+3/4)=23 | | 3(a-5)+1=16 | | 3(q+34)=23 | | 12+6(7)=x | | 2x+33=11 | | x^2+x^2+2x+1=0 | | -0.66n=12 | | 5x+28(x-3)=378 | | 5x^2+3x-42=0 | | x2–10x=7 | | 0=x^2+x+16 | | 17x+14+4x-2=0 | | 2x4-7x2-49=0 | | .75+.5(50-x)=28.75 | | 22=14+7x | | 8x-6+2x+10=29 | | 12x19/3=5x/5-6 |